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An asymptotic frequency-domain approach is used to describe the radiation from a 
supersonic swept propeller within the framework of linear acoustics. With this 
approach the radiation of singularities, their points of origin on the blades, and their 
relation to blade geometry and loading are easily obtained. In particular, it is shown 
that a swept propeller with a completely subsonic leading edge can still radiate 
singularities, if the leading edge is blunt, due to a supersonic edge effect at the blade 
tips. In addition, the radiation from a family of ‘critical’ swept-blade designs is shown 
to be more singular than that from a straight-bladed design. Numerical and asymptotic 
results for such designs show that the peak radiation is, typically, increased by 5-10 dB. 

1. Introduction 
The advanced propellers currently being studied generally incorporate some degree 

of blade sweep (see, particularly, Metzger & Rohrbach 1979, 1985). Sweep is included 
in the blade design mainly for aerodynamic reasons but, in addition, it also produces 
acoustic benefits because the signals, emitted from different radial stations, are 
partially dephased. Some discussion of this aspect has been given by Hanson (1980~). 

When linear theory is used to predict the radiation from propellers operating 
supersonically it is found (Hawkings & Lowson 1974; Tam 1983; Amiet 1988; 
Chapman 1988) that singularities are present in the pressure field. All previous work 
of this nature, with the exception of Amiet (1988), has concentrated solely on straight- 
bladed propellers. As will be shown, however, the swept-blade case throws up a 
number of extremely interesting possibilities - none of which can occur on a straight- 
bladed design - of some concern for enhanced noise radiation. 

Amiet (1988) carried out a full time-domain analysis suggesting, first, that this gives 
a more physical understanding of the singularities and their point of origin on the blade 
- with a frequency-domain approach, he argued, it becomes difficult to determine 
detailed source locations - and second that, if the results of the frequency domain are 
inverted back to the time domain, the singular peaks and abrupt slope changes in the 
pressuretime waveform will require many frequency terms to get comparable 
resolution. Amiet showed that the singularities were radiated from regions on the blade 
edges that move towards the observer at sonic speed while at the same time having the 
edge normal to the line joining the source point and the observer. Accordingly, he 
concluded that the singularities can be removed by sweeping the rotors so that the 
Mach number component normal to the leading and trailing edges is subsonic for all 
points on the rotor edges. The limitations of Amiet’s work are, however, that the blade 
leading- and trailing-edge shapes are fixed (sharp or, more precisely, wedge-shaped) 
and that the noise source is restricted to thickness noise. 

t Now at Rolls-Royce plc, PO Box 31, Derby DE24 8BJ, UK. 
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FIGURE 1 .  The nominal propeller disk plane. 

Here we use an asymptotic far-field frequency-domain approach, valid in the limit 
mB+ co, where B is the number of blades and m is the harmonic of blade passing 
frequency. Previous work (Parry & Crighton 1989; Crighton & Parry 1991, 1992) has 
shown the accuracy of this approach - even at relatively low values of mB. The noise 
radiation, in the frequency domain, can be put in the form of a triple source integral: 
an integral along the blade chord between leading edge and trailing edge ; an integral 
along the blade span between hub and tip; and an azimuthal integral around the 
nominal propeller disk. The latter integral, however, can be evaluated analytically 
producing the usual Bessel function (see, for example, Hanson 1980b). The radial 
integral can, therefore, be evaluated asymptotically using an appropriate form for the 
Bessel function and the properties of one-dimensional integrals (the chordwise integral 
being incorporated into a spanwise source term). 

For the case of a swept propeller it is preferable to retain the azimuthal integral, as 
did Hawkings & Lowson (1974), and carry out the analysis using asymptotics of 
double integrals (see, for example, Jones & Kline 1959; Chako 1965; Bleistein & 
Handelsman 1969; Dingle 1973, chap. IX); with this approach we can obtain not only 
the radial stations from which singularities are radiated, but also the azimuthal angle, 
i.e. we do, indeed, obtain the detailed source locations. In addition, the asymptotic 
frequency-domain approach gives us, automatically, the precise dependence of the 
high-frequency components on mB; we can thus determine, immediately, the form of 
any radiated singularity. We thus argue that the asymptotic frequency-domain 
approach can generate an enhanced understanding of the underlying physical noise- 
generating mechanisms, as well as producing remarkably simplified, and accurate, 
formulae for noise generation. 

In 92 we use stationary phase techniques for double integrals to show that, in 
agreement with Amiet (1988), the radiation is dominated by contributions from regions 
on the blade edges that move towards the observer at sonic speed whilst having the 
edge normal to the line joining the source point and the observer. The presence of 
singular radiation is discussed in 93 along with the relation between the form of the 
singularity and the details of blade loading and geometry. In 54 we examine Amiet’s 
‘minimum sweep’ concept and discuss radiation from propellers with completely 
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subsonic leading edges. The precise origin of the singular radiation, in terms of radii and 
azimuth, is presented in 95. In 96 we discuss the possibilities of enhanced noise 
radiation and calculate the shapes of a family of ‘critical’ designs. Comparisons 
between numerical and asymptotic results are given in $7 for swept propellers with 
subsonic, transonic and supersonic leading edges. Conclusions are presented in Q 8. 

2. The leading-order solution 
2.1. Background 

Crighton & Parry (1991) have shown that for a straight-bladed propeller operating 
supersonically the far-field radiation in direction 8 is dominated by that section of the 
blade, z = z*, which approaches the observer at 8 with precisely sonic speed; provided, 
of course, that 8 lies in the range for which Mo(8) = Mt sin 8 + M,  cos 8, the tip Mach 
number component resolved in the direction 8, is greater than unity. Here, 8 represents 
the angle between the propeller flight axis and a line drawn from the centre of the 
propeller to the observer, z denotes a blade element radius, normalized by the blade tip 
radius, and Mt and M,  are the propeller tip rotational and axial Mach numbers 
respectively (see figure 1). The ‘straight-blade’ Mach radius is given by 

(1) 

For the present we neglect the effects of chordwise non-compactness so that the 
harmonic components of the far-field radiated sound are given by (Parry & Crighton 
1989; Crighton & Parry 1991, 1992) 

z* = (1 - M,  cos 8)/(Mt sin 8). 

P, = lZ: S(z)J,,(mBz/z*)e-’~~dz, 

where, as usual, S(z) is used generically to denote the source strength at radial station 
z and $s is a phase term, introduced by Hanson (1980b)l., representing the effects of 
blade sweep, defined by 

2mBMt s/D 
A = M,( 1 - M ,  cos 8)’ (3) 

and z ,  is the propeller hub/tip ratio. The sweep parameter s is, in common with 
Hanson (1980~) and Amiet (1988), the distance the blade is swept back along the 
helical path it describes, D is the propeller diameter and M, = (W, + z2 @)l/’ is the 
blade-section relative Mach number. The full waveform, as a function of time, is 
obtained from (2) by introducing the amplitude and phase multiplying factors and 
summing the harmonics : 

t--O +imBQx--$,) 
im BSZ -PC; DB W 

P(t) = 8xrO( 1 - M ,  cos 8) m=-W exp[(1-M,cos8)( I,) 
In (4) p is density, c, is the ambient speed of sound, Y, is the distance from the centre 
of the propeller to the observer, Q is the shaft angular speed and $o is the 
circumferential angle between the observer and the reference position. The source 
strength term in (2) is given by 

( 5 )  S(z) = ik, (CJ2) w, S(z) = k: (b/c) w 
Note that, as in earlier papers, our expressions are, essentially, the complex conjugates of 

Hanson’s since he assumed a time dependence e-iwt and we have used eiwt. 
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for the blade loading and thickness source terms respectively, where the non- 
dimensional wavenumbers k, and k,  are defined by 

(6) 
2mBM, c/D 

k,  = 
M,( 1 - M ,  cos 0)' 

2mB(w cos 0 - M,) c/D 
k, = 

zM,( 1 - M,  cos 0) ' (7) 

C, is the blade-section lift coefficient, b is the maximum section thickness and c is the 
local chord length. We thus note the dependence of S(z) on the observer position 0, the 
forward and rotational Mach numbers M,  and M,, and on the harmonic product mB. 
We will see later that this latter dependence is important in determining the significant 
physical characteristics of noise radiation. 

2.2. Stationary phase 
We now need to tackle the integral (2) in the limit mB + cc. The most appropriate way 
to do this is by introducing the integral form of the Bessel function, 

JmB ( mB- ;*) =- 2nl""il,exP[imB(t+fcos t)]dt 

(here, and throughout the remainder of the paper, t is taken to be a dummy integration 
variable), so that (2) is written as the double integral 

where 
f(z, t) = t + ( z / z*)  cos t - ?/?s(z), 

and the modified sweep phase factor is 

M ,  s 
@s(z) = My( 1 - M ,  cos 0)' 

Here, for simplicity, we have introduced a normalized sweep parameters S= 2slD. The 
double integral (9) can then be evaluated in the limit mB+ co using the method of 
stationary phase in two dimensions (see, for example, Chako 1965). The first- and 
second-order partial derivatives off(z, t) are needed throughout the work that follows. 
We thus list them here as 

af C O S ~  af z .  
?/?i(z), = 1 --sin t, - - - ~- 

aZ z* Z* I 
so that at a stationary point (or, following Chako 1965, an interior critical point), 
where af/az = i?f/at = 0, we have 

cos t = z*@i(z), sin t = z*/z (13) 
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or, on eliminating t, 
Z*2{[@i(Z)]2+ 1/22} = 1. (14) 

We assume, for the present, that the solution to (14), z = z" say, lies on the blade?, i.e. 
zo < z" < 1. (Of course, when, @&z) = 0 we obtain simply z = z*, the 'straight-blade' 
Mach radius.) Expandingflz, t )  and S(z) in a Taylor series about z = 5, t = t" (where t 
= ?is the solution of (13) at z = 3, we obtain the leading-order contribution from the 
stationary phase point as 

where we have introduced the notation 

and used the simple transformation 

Z =  Z-2, T =  (t-t")+-(z-q, f, 1 

f o , ,  

for which the Jacobian is unity. The integral is easily evaluated as 

x exp{imB(f,,o-~n)+i~nsgn(mB)sgn(f,,2) [1 +~sn(f~,ofO,2-f4,1)1>. (18) 

P, - z*S(z*)/lmBI. (19) 

In the straight-bladed case it is easy to see from (13) that z" = z* and ? = n/2 so that 
(1 8) reduces to 

This result was given previously in Crighton & Parry (1991) where it was observed that, 
when taken in conjunction with the shape of the blade leading and trailing edges (i.e. 
blunt, wedge-shaped or cusp-shaped), or the form of the chordwise blade loading 
distribution near the leading and trailing edges, (19) could indicate, immediately, the 
type of singularity radiated from the Mach radius towards the observer. 

In the swept case we can see clearly that, provided the solution z = z" to (14) lies on 
the blade, the leading term of the solution is of the same order as that in the straight- 
blade case. 

2.3. The 'swept-blade' Mach radius 
It is, of course, important to understand where precisely z" lies on the blade and whether 
this point has any physical significance. Indeed, we need to compare our result with 
that of Amiet (1988) who showed that, for the specific case of an airfoil with sharp 
leading and trailing edges (or, more precisely wedge-shape leading and trailing edges), 
logarithmic singularities in the waveform are produced by regions on the blade edges 
that move towards the observer at sonic speed while at the same time having the edge 
normal to the line joining the sonic point and the observer. 

To make this comparison we follow Amiet (1988) and introduce a local blade sweep 
angle A where the blade is projected onto a plane (the nominal propeller disk) which 
is normal to the axis of translation, with A defined as the angle between the radius 

t As will become clear later, there is, potentially, more than one solution to (14). 
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Leading-edge 

FIGURE 2. The blade swept and unswept leading-edge geometries in the nominal disk plane. 

Leading edge , position (straight) 

FIGURE 3. Mach number triangle and its relation to the displaced leading-edge position. 

vector and the tangent to the leading edge (see figure 2). Then, A can be related to the 
variation in the propeller azimuth with radius by 

tan A = -zd$/dz, (20) 

where 4 = q50 -p. The reference axis 4 = 4o represents the unswept leading edge. Since 
the propeller is swept back along the helical path it describes, we can use the Mach 
number triangle (see figure 3) to obtain 

p = @sin a)/z ,  sin a = zMt/Mr, (21) 
where a is the local blade stagger angle; a helical sweep of s thus corresponds to an 
azimuthal displacement of zp. From (1 1) and (21) we see that p is related to the sweep 
phase factor @s by 

so that, on differentiating with respect to z and using (20), we obtain 

p = (1 - M,  cos 6)  @s(z)7 (22) 

tan A 
@Kz) = z( 1 - M ,  cos 6)’ 

Equation (14), which determines the radial station(s) providing the leading-order 
contribution(s) to the radiated sound, thus becomes tan2 A/[ z2 (  1 - M ,  cos 6)2] + 1 / z 2  = 
1 / ~ * ~  or, on replacing the ‘straight-blade’ Mach radius from (l), 

(24) tan2 A + (1 - M ,  cos 6)’ = @ z2 sin2 6. 
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It is easiest to interpret this equation for the case of a propeller with no translation, 

(25) 

i.e. M,  = 0. Then (24) reduces to 

zM, cos A sin 8 = 1. 

We consider, as in previous papers, an observer in the far field positioned, without loss 
of generality, in a horizontal plane through the propeller axis. It is clear that the 
solution z = z “  to (25) represents a point on the blade where the Mach number 
component normal to the leading edge is sonic in the direction of an observer at 8. 

We now consider the case of a translating propeller, i.e. M,  $; 0, by introducing x, y 
coordinates where the x-axis coincides with the propeller axis and the y-axis is normal 
to the x-axis and lies in a horizontal plane; the origin of coordinates is at the centre 
of the nominal propeller disk. For a specific blade, such as that described in figures 1 
and 2, the position of the leading edge at radial station z, in terms of x and y, is 

(26) 
M z  Mx x = -scosa = -s- = --(1-M,c0s8)$,(z), y = zcosq5. 
Mr Mt 

Note that here, and in what follows, we take q5 to be measured from the positive y-axis. 
On differentiating we find that elemental changes in these coordinates with increasing 
radius are given by 

dx/dz = - M J M ,  (1 - M,  cos 0) $i(z) = - (M,/zM,) tan A ,  

dy/dz = cos q5 -z sin q5 d$/dz = cos q5 + sin q5 tan A .  

We consider a line from the blade to an observer at 0. This line, of length R, is normal 
to the leading edge when dR/dz = 0 or, in terms of x and y, when 

} (27) 

cos 8 dx/dz + sin 8 dy/dz = 0. (28) 

(This analysis is, of course, only valid for an observer in the far field.) Combining (27) 
and (28) we find that the blade is moving normal to itself in the direction of an observer 
at 8 when 

(29) 

We now determine the speed, or Mach number Mobs, of this blade in the direction of 
the observer. For an element at radial station z, positioned at angle q5 to the horizontal, 
as in figure 1, this speed- is 

(30) 

The azimuthal angle at which the blade edge is moving towards the observer at 
precisely sonic speed, therefore, is given by 

(3 1) 

- (MJzM,) tan A cos 8 + cos #I sin 8 + sin q5 tan A sin 8 = 0. 

Mobs = - zM, sin q5 sin 8 + M,  cos 8. 

sin q5 = - (1 - M,  cos 0)/(zM, sin 8). 

Substituting this in (29) we obtain, after a little manipulation, the result tan2A + 
(1 - M,  cos 8)2 = z2w sin2 0 - which is precisely the solution obtained using the 
stationary phase procedure - when the blade edge is travelling normal to itself, at 
precisely sonic speed, in the direction of an observer at 8. 

We have found, therefore, that the radiation from the blade is, to leading order in 
mB, given by (18) and is dominated, in the general case?, by the contributions from the 
radial station z = z“ at which the blade moves normal to itself, and directly towards the 
observer, at sonic speed. We will, therefore, call z = z” the ‘swept-blade’ Mach radius. 

t Situations in which (18) is not the leading-order term, or in which the dominant contribution 
does not come from the ‘swept-blade’ Mach radius, will be discussed later. 
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Amiet (1988) found that, for a wedge-shaped leading edge, logarithmic singularities 
were radiated, in the thickness-noise sound field, from z = z”. In order to determine the 
precise form of the singularities radiated from the leading and trailing edges using the 
asymptotic frequency-domain approach we proceed, as before (Crighton & Parry 
199 l), to consider chordwise non-compactness effects. 

3. Singularities radiated from the ‘ swept-blade ’ Mach radius 
3.1. The general case 

The different types of singularities radiated from the Mach radius have been discussed 
previously in the context of an asymptotic frequency-domain approach by Crighton & 
Parry (1991). Here we summarize briefly their results with appropriate modifications 
being made where necessary to include the effects of blade sweep. The reader is referred 
to their work for a more detailed description. 

In order to consider the effects of blade shape on thickness noise, and of chordwise 
loading distribution on loading noise, we modify the integrand in (2) by the multiplying 
factor 

1/2 

Y(k,) = J-,,, F ( X )  ecikXX dX, 

where F ( X )  is a general chordwise shape function corresponding either to the blade 
loading distribution or the blade thickness distribution. Now k x  is, from (6),  
proportional to mB so that in the limit mB+ 00 (32) can be evaluated using asymptotic 
Fourier transform procedures (see, for example, Lighthill 1958). In the region of the 
blade leading (L)  and trailing ( T )  edges we put 

We will refer to vL and vT as the leading- and trailing-edge source gradient orders. 
Then, as in Crighton & Parry (1991), the chordwise non-compactness factor can be 
evaluated asymptotically as 

1 l)sgn(mB) 
a, V , !  

W X )  - p 

Accordingly we consider separately the leading-edge and trailing-edge contributions 
and define a new leading-edge source strength term 

a, V,! 
S L ( 4  = lkZlYLfl S(z)exp[-iin(v,+ l)sgn(mB)]. (35) 

The additional phase term k, /2  in the leading-edge contribution to (34) is accounted 
for by introducing the normalized leading-edge sweep sL = 2(s - c / 2 ) / D  so that the 
sweep is now measured from the airfoil leading edge as in Amiet (1988), instead of the 
pitch change axis as in Hanson (19804 and Crighton & Parry (1991). The sweep phase 
factor is, accordingly, modified to 

Mt S L  

~L = M,( 1 - M ,  cos 0)‘ 
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Similarly, we introduce a new source strength S,(z) and phase factor $T, with trailing- 
edge sweep sT, to represent the trailing-edge contribution. 

We can now use the results obtained above to deduce, from the asymptotic form of 
the harmonic series, the type of singularity radiated from the ‘swept-blade’ Mach 
radius. The method is described in detail in the appendix of Crighton & Parry (1991). 

3.2. Thickness noise 
The source strength term S(z) is defined in (5 ) .  Since we are, at this stage, only 
interested in the form of the singularity - or otherwise - radiated from the blade we 
consider only the amplitude terms related to mB so that 

S(Z) - k: - lmB(’. (37) 
We now add the effects of chordwise non-compactness as given in (35). Here we 
consider only the contribution from the leading edge ; the trailing-edge contribution 
can, of course, be treated in an identical manner. An additional term in mB arises from 
the stationary phase point in the spanwise integral and, from (12) and (18), we are left 
with 

- IrnBl-”~ {cos [fn (vL + l)] - i sgn (mB) sin [in (vL + l)]). (38) 

The additional phase factors in (18) due to blade sweep effects merely serve to shift the 
origin of any radiated singularities, and to modify the arguments of the sine and cosine 
terms. The main effect of blade sweep, for a supersonic leading edge, is seen to be 
represented by the amplitude factor Iz”$@) $i(2) - 11-l; the nature of any radiated 
singularity thus remains unchanged. 

We consider three general cases corresponding to different values of the source 
gradient order vL. If the airfoil has a blunt leading edge then 0 < vL < 1 so that, on 
inverting the harmonic series using the methods of Lighthill (1958), we find that weak 
algebraic singularities of the form I t l - ( l -Y~)  and sgn ( t )  Itl-(l-”~) are radiated. For the 
specific case of an airfoil with a parabolic leading edge the thickness varies as (i + X)l/’  
near the edge so that vL = f ;  the inverted series thus contains singular terms of the form 
ltl-1/2 and sgn ( t )  ltl-1/2 - it is shown in Crighton & Parry (1991) that these terms actually 
combine to produce singular terms of the form [l +sgn(t)] JtJ-’/’. This lmBJ-’/’ and 
ltJ-l/’ behaviour for thickness noise generated by a round leading edge is in agreement 
with the results of Tam (1983) who considered thickness noise generated by transonic 
straight-bladed helicopter rotors. The second general case arises when the airfoil 
has a wedge-shaped leading edge, i.e. the thickness varies as ( f + X )  near the edge. 
Then vL = 1 and the harmonic series produces a waveform containing logarithmic 
singularities. This result has been found previously by Amiet (1988) who considered 
thickness noise generated by both straight and swept supersonic propeller blades ; 
it was also mentioned by Tam (1983) whose blades had wedge-shaped trailing edges. 
Finally, we consider an airfoil with a cusp-shaped leading edge, i.e. the thickness varies 
as (++X)”L  near the edge with vL > 1. In the time domain we thus obtain a smooth 
waveform containing terms of the form Itl”~-l and sgn ( t )  Itl”~-l. 

3.3 Loading noise 
We now turn to the loading noise source and consider whether or not this source term 
produces singularities in the radiated acoustic pressure. The loading noise case is of 
particular interest since the recent discussion of radiated singularities in the literature 
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has been confined to the thickness noise source. The source strength in ( 5 )  for blade 
loading gives 

(39) 
Combining this with (33,  representing non-compactness effects, and (1 8), representing 
the leading-order contribution from the stationary point, produces harmonic 
components of the form 

S(z) - k, - mB = lmBl sgn (mB). 

P, - lrnBI-’~-~ {sgn (mB) cos [in (vL + l)] - i sin [in (vL + l)]}. (40) 

Here we also consider three general cases corresponding to different values of the 
source gradient order vL. The first of these is the highly loaded leading edge at which 
the loading is weakly singular, i.e. the loading varies as (i + X)”. near the edge with 
- 1 < vL < 0. Then, on inverting the harmonic series, we find that weak algebraic 
singularities of the form J t l ’~  and sgn ( t )  l t l”L are radiated. Secondly, we consider airfoils 
with finite leading-edge loading, i.e. the loading is constant (to a first approximation) 
near the edge so that the source gradient order vL = 0. The waveform thus contains 
logarithmic singularities identical to those generated by the thickness noise from a 
wedge-shaped leading edge. Finally, we consider a lightly loaded leading edge, i.e. the 
loading approaches zero at the leading edge so that the source gradient order vL > 0. 
Then, as for the thickness noise from a cusp-shaped leading edge, we obtain a smooth 
radiated pressure field. 

4. Removal of the leading-order term 
4.1. Amiet’s ‘minimum sweep ’ 

Since the inverse square root and/or logarithmic singularities discussed in 0 3 emanate 
from the Mach radius it is, of course, possible to remove them by ensuring that the 
blade leading and trailing edges are subsonic across the entire span of the blade. This 
has been discussed previously by Amiet (1988) who introduced the concept of 
‘minimum sweep’, i.e. the minimum sweep that still avoids generating a singularity (a 
logarithmic singularity in his particular case). We will reanalyse this situation because 
of a minor error in (or, more precisely, restriction in the use of) one of Amiet’s results. 

We start with the case of a non-translating propeller (or, alternatively, a helicopter 
rotor). The Mach number component of the leading edge, normal to itself, in the 
direction of an observer at 8 has a peak value of Mobs = zM, cos A sin 8 at q5 = -in + A  
and thus is maximum for an observer at 8 = in, i.e. for an observer in the plane of the 
rotor - as would be expected intuitively. If, then, we choose the local sweep angle A(z) 
so that 

we have Mobs < 1 everywhere, with the equality being satisfied only at 8 = in. The 
variation in the azimuthal sweep angle p (see figure 2) along the blade then satisfies, 
from (22) and (23), 

(42) 
dp - tanA 
dz Z 

ZM,COSA = 1 (41) 

-- - 

so that, using (41), we obtain dp/dz = (z2@-- 1)1/2/z or, on integrating, 

p = (z2@ - 1)1/2 - tanp1 (z2@ - 1)1/2, (43) 
in agreement with Amiet’s result for a non-translating propeller. 

We now turn to the case of a translating propeller. For a point on the leading edge 
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at radial station z the Mach number in the direction of an observer at 8 in the (x,y)- 
plane is Mobs = -zM, sin 4 sin 8 + M,  cos 8. Our intention is to construct the blade 
leading edge so that the maximum value of Mobs, when the blade is moving normal to 
itself, is unity. We need, therefore, to maximize Mobs subject to the constraints that the 
maximum value of Mobs must be unity (- zM, sin # sin 8 + M,cos 8 = l), and that the 
blade leading edge moves normal to itself; this second constraint is given, formally, by 
(29). Using the method of Lagrange multipliers we construct the function 

L(8,#) = -zM, sin 4 sin 8+ M ,  cos 8+ A,( -zM, sin # sin 8+ M ,  cos 8- 1) 

+ A,[ - (M,/zM,) tan A cos 8 + cos 4 sin 8 + sin $ tan A sin 81, (44) 

where A, and A, are the multipliers, and find, after the usual process and a little 
manipulation, that the maximum value of Mobs, satisfying the constraints, occurs when 

8 = COS-1 (M,/w) (45) 

and the blade leading-edge angle A is given by 

tan A = (zM,/M,) (w - l)l/'. 
The results differs from that of Amiet who obtained tanA = (z2N/p2-  1)1/2, where 

= (1 -MZ)li2. The minor error has been acknowledged by Amiet (1994, personal 
communication) who pointed out, however, that his solution would be valid for an 
unconventional swept blade design in which the blade leading edge is constrained to 
move in a plane normal to the x-axis - a configuration which Amiet describes as non- 
optimal. Amiet's solution can easily be obtained by keeping dx/dz = 0 in (27)-(30) 
which, along with (3 l), lead to zM, sin 8 cos A / (  1 - M ,  cos 8) < 1. The peak value of the 
left-hand side is zM, cos A l p  when cos 8 = M,. We thus ensure that the blade leading 
edge is, at most, transonic by setting cos A = p/(zM,), or, on using (42) and integrating, 
,u = (z2@/p2 - l)l/'- tan-l (z2@/p2 - 1)ll2 in agreement with Amiet's result. 

The blade leading edge on the conventional - or optimal - swept blade design can be 
determined from (42) and (46); by integrating and using Gradshteyn & Ryzhik (1965, 
$3.152.5 and $3.153.4) we obtain, after a little manipulation, 

where E($, k)  = 
In figure 4 we show the planform of two blades with minimum leading-edge local 

sweep angle A for (a) a propeller with tip rotational Mach number M, = 0.8 and 
forward Mach number M,  = 0.8, and (b) a propeller with tip rotational Mach number 
M ,  = 1.2 and forward Mach number M,  = 0. These Mach numbers are typical for 
advanced propellers operating at 'cruise' and ' take-off' conditions respectively. Note 
that the leading-edge sweep parameter sL can be obtained from (47) as sL = ,uM,/M,. 

4.2. The t@ contribution 
We suppose now that the blades have been swept sufficiently to ensure that the Mach 
number component normal to the leading edge is everywhere subsonic. The leading- 
order contributions (18) from the stationary phase points (or, following Chako 1965, 
interior critical points) are, therefore, no longer present. The next-order terms can be 
calculated either by considering (2) as a one-dimensional integral and using asymptotic 
properties of the Bessel function with large argument, large order and argument greater 
than order (this approach was taken by Crighton & Parry 1991), or by following 

(1 - k2 sin2 a)'/' da  is the elliptic integral of the second kind. 
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A = 20.5" at tip 
(a) 

A = 33" at tip 
(b) 

FIGURE 4. Blade planforms with 'critical' leading-edge designs: (a) M,  = 0.8, M, = 0.8, I9 = 
cos-lM, = 37", blade shape calculated from (47); (b) M, = 0, M, = 1.2, I9 = 90°, blade shape 
calculated from (43). 

Chako's double integral method in which the next-order contributions come from 
boundary critical points. Here, for consistency with our approach in $2 (and, further, 
with our calculations below in $ 5 ) ,  we use Chako's method. 

Boundary critical points are those points on the boundary of the domain of 
integration at which the tangential derivative ofJTz, t) vanishes. In our case the domain 
is an annular region described by the radial coordinate z and the angle t (in fact t is 
related, quite simply, to the azimuthal angle 4 by t = -4). The tangential derivative 
off vanishes, therefore, when df/i3t = 0 so that boundary critical points arise when 
af/at = 0 and z = 1 or z =zo. Here we neglect the contribution from the hub since it 
usually moves subsonically thus giving only an exponentially small contribution (see 
Parry & Crighton 1989). For the unusual case of a propeller with a high hub/tip ratio 
and supersonic tip speed sufficiently high that the hub is also moving supersonically, 
an approach identical to that given below can be used to calculate the hub 
contribution. 

From (12) the boundary critical points arise when z = 1 and sin t = z* producing 
two solutions (2, i,) - where 

By expanding S(z) and JTz, t )  in Taylor series about these points we find that the 
two contributions P; from the tip to (9) are, to leading order, given by the double 
integrals (k) 

where the partial derivatives&,, here are evaluated at z = 2 = 1, t = i,. - The integrals 
are easily calculated as 
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Adding the two solution (50) for t = f+ and t = tl-, and substituting for our original 
variables we obtain 

pm 

~ ~ ( 1 )  e-imB@s(1)-in/2 exp [imB(tan 6 - 4) - iin sgn ( m ~ ) ]  

tan 4 - $:(I> (2n)1/2mBlmB11/2 (tan 4)1/2 

where, for comparison with the alternative Bessel function approach, we have replaced 
f+ by 6 = fn - f+ - given as ,8 in Crighton & Parry (1991). 

Our present calculation has assumed that the source strength S(z) is non-zero at the 
blade tips. In general, however, this is not necessarily true; e.g. rounded blade tips 
would produce a thickness source strength that dropped to zero at z = 1 and a 
spanwise blade loading distribution similar to the elliptical distributions commonly 
found on wings would also result in a source strength tending to zero at the tips. The 
case in which S(z) drops to zero at z = 1 can, however, also be treated by the present 
approach. We put, simply, 

so that the leading-order term is O[S( 1) I mBI-3/2-n] instead of O[S( 1) I mB1-3iz] as in 
( 5  1). Here the precise dependence on mB is obtained by filling in the dependence of S(z) 
on mB, where S(z) - taken to be either S,(z) or S,(z) - includes both source strength 
and non-compactness effects. 

4.3. Singularities radiated from the tip 
The question now arises as to whether singularities can still be radiated from a 
supersonic propeller with a completely subsonic leading edge. In this situation -where 
there is no ‘swept-blade’ Mach radius - the dominant term clearly arises from the tip 
contribution. We calculate the precise order of the leading term following the approach 
in 53. Then, on combining source strength, chordwise non-compactness and tip edge 
effects we find that, for thickness noise, the leading term is of the form 

Pm N ~mB~-Y~-1~2{sgn(mB)cos[(v,+ l)fxf$t]-isin[(u,+ l)fn+$n]}, (53) 

where we have given only the leading-edge contribution at the tip; a similar term arises 
from the trailing edge at the tip with v, replaced by v,, where v, and v, are the leading- 
and trailing-edge source gradient orders defined in (33). In (53) the additive constants 
of +in in the cosine and sine terms arise directly from the two phase terms in (51); the 
upper and lower signs represent the contributions from t = l+ and t = f- respectively. 

We can now consider three distinct cases, corresponding to different values of the 
source gradient order v,, which differ, somewhat, from the three cases examined 
previously in $3 for radiation from the ‘swept-blade’ Mach radius. All of these cases 
can include ‘blunt’ leading edges (with differing degrees of bluntness), although the last 
case to be considered also includes sharp edges. First we specify that the source 
gradient order satisfies 0 < v, < f and thus obtain a time-domain solution containing 
weak algebraic singularities of the form sgn(t) Itl-(’12-”L) and Itl-(1/2-YL) from the 
cosine and sine terms in (53) respectively. Next we consider a blade tip with a parabolic 
leading edge so that the source gradient order vL = i .  Here we treat the upper and lower 
signs in (53) separately. The contribution from t = t, comes solely from the cosine term 
and produces an acoustic waveform with pressure discontinuities - or shocks - of the 
form sgn(t). The contribution from t = tl- comes solely from the sine term and 
produces a real-time waveform containing In It1 logarithmic singularities. This solution 

S(z) N ~ ( 1 - z ) ~  as z + l  (52) 
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is particularly interesting as the two separate solutions are radiated at different 
azimuthal positions; we will discuss this point further below. Finally, we consider 
leading edges for which the source gradient order vL > f ;  this case thus includes wedge- 
shaped and cusp-shaped leading edges. Here, by inverting (53), we obtain solutions of 
the form sgn(t) 

The sharp-edged airfoils examined by Amiet (1988) will, then, clearly produce non- 
singular solutions when the blades are swept so that the leading edge is everywhere 
subsonic. However, it is very important to note that supersonic airfoils with blunt 
leading edges will continue to radiate singularities, or discontinuities, even when the 
leading edge is effectively subsonic, the singularities/discontinuities being radiated from 
the blade tip. The radiation of inverse square-root singularities from blade tips with a 
blunt leading edge has been discussed previously by Tam (1983). However, Tam was 
concerned solely with straight blades and transonic tips. It was, therefore, previously 
unclear whether or not the singularities were associated specifically with a tip effect or 
a transonic effect. In addition, combining the results of both Amiet (1988) and Tam 
(1983), it was unclear whether sweeping the blade would remove the singularities from 
the sound field. The description above shows that singularities can emanate from either 
a Mach radius or the tip. Clearly any singularities associated specifically with a Mach 
radius will be removed completely by sweeping the blade sufficiently. The singularities 
radiated from the tip, however, are not a transonic phenomenon but represent a 
supersonic edge effect (where edge means the leading or trailing edge at the tip) which 
cannot be removed by sweeping the blade; they can only be removed either by 
providing a sharp leading edge (actually, this is too stringent a specification; we 
require, for preciseness, merely that the source gradient order vL > f )  at the tip, or by 
rounding the blade at the tip, as described by (52), so that 

and ltl”~-’/~ thus producing a smooth waveform. 

g+ V L  > ;. (54) 
A discussion similar to that given above applies to blade loading noise. Here, 

P, - lmBI-”~-~/~{cos[(v~+ l)fn.nf;n]-isgn(mB)sin[(v,+ l)$.nf+n]}, (55) 

where, as before, we have given only the leading-edge contribution and the f i n  terms 
are associated with t = f+ and t = f- respectively. As for thickness noise we consider 
three cases corresponding to different values of the source gradient order vL. First, for 
- 1 < uL < -f, we obtain weakly singular solutions of the form p ( t )  - (tl-(-”~-‘/~) and 

p( t )  - sgn ( t )  l t J - ( - ”~ -~ /~ )  from the cosine and sine terms in ( 5 5 )  respectively. Secondly, 
for vL = -f we obtain two distinct solutions: a pressure discontinuity, or shock, 
p ( t )  - sgn ( t )  from t = f+; and a logarithmic singularityp(t) - In It1 from t = f-. Finally, 
when the source gradient order vL > -f we obtain smooth solutions of the form 
p( t )  - I t l ” ~ + ~ / ~  and p( t )  - sgn(t) ) t ) ” ~ + l / ~ .  

In order to remove singularities from the loading noise sound field, therefore, we 
require, in addition to a completely subsonic leading edge, that the source gradient 
order for the leading-edge loading at the tip satisfies vL > -;, or that the loading drops 
to zero at the tip with (54) being satisfied. 

combining all effects, the leading-order term is of the form 

5. The Mach plane 
The discussion so far has informed us of the radial stations from which singularities 

are radiated - namely the Mach radius or the tip - and the form of the singularities. 
However, even without knowing the swept-blade geometry, we still have sufficient 
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/ X \ 
\ 

FIGURE 5 .  The Mach plane. 

information to calculate in more detail the positions in the disk plane at which 
singularities are generated. 

5.1. Mach radii 
Any radial station z = z" qualifying as a Mach radius (as we commented earlier, a swept 
propeller can have more than one Mach radius) satisfies (13) so that 

z"sin(-$) = z*. (56) 
This result tells us that, whatever the geometry of the blade, singularities - if they exist 
- are generated when the swept-blade Mach radii cut through a plane which lies a 
distance z* from the centre of the propeller disk and is parallel to the plane containing 
the propeller flight axis and the observer. We will call this plane the 'Mach plane' (see 
figure 5 which, for ease of interpretation, has been rotated by n). Since $ is related to 
the integration parameter t by $ = - t we also have, from (13) and (23), that 

Zcos $ = z* tan A / (  1 - M ,  cos 8). (57) 
Then, for A > 0 (representing backward swept propeller blades) the solutions lies in 
-in < $ < 0, and for A < 0 (forward swept blades) in - n <  $ < --in. For an 
observer on the other side of the propeller it is easily seen, by rotating the x,y axes 
through 180", that the singularities are generated a distance z* above the (x,y)-plane 
where, of course, the blades are moving towards the observer. 

5.2. Supersonic tips 
Any singularities radiated from the tips are generated, from (56), when 

sin$ = -z*, z = 1. (58) 
More specifically this result shows, again, that the singularities are radiated when the 
blade tips cross the Mach plane. At this point the speed of the blade tip towards an 
observer at 8 is Mobs = - Mt sin $ sin 8 + M ,  cos 8 which, from (l), becomes Mobs = 1, 
i.e. the singularities are generated when the blade tip speed is sonic in the direction of 
the observer - whatever the details of blade sweep at the tip. 

For the particular cases of thickness noise radiated from a parabolic leading edge, 
and loading noise radiated from a leading edge sustaining an inverse square-root 
singularity (in the loading), we found in 94 that the contributions from t = f+. and 
t = f- produced different singularities : a pressure discontinuity - or shock - is radiated 
when the leading edge at the blade tip cuts the Mach plane and t = f+, or $ = -sin-' z*, 
i.e. the blade is on its 'up stroke'; a logarithmic singularity is radiated when the 
leading edge at the blade tip cuts the Mach plane and t = f-, or $ = -n+sin-lz*, i.e. 
the blade is on its 'down stroke'. 
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6. More singular solutions 
6.1. The focusing Mach radius 

We now consider whether it is possible for a swept propeller to radiate discontinuities 
that are more singular than those radiated by a straight-bladed propeller. To do this 
we return to the double-integral formulation (9) and consider the work of Chako 
(1965). Chako showed that the leading contribution of O( l/rnB) from ‘interior critical 
points’ (stationary phase points) could be superseded by a contribution from an 
interior critical point which is also a ‘caustic’ or ‘focus’, i.e. when the denominator in 
(1 8) vanishes. 

We proceed, as in $2 to expandflz, t )  in a Taylor series about a Mach point z = z“, 
t = f. Including third-order terms we find, after using the simple transformation (17), 
that 

+higher order terms. (59) 

If we now suppose that (14) is not just satisfied at the discrete points z = z“ but is 
satisfied analytically close tot  z = z” then we can differentiate (14) to obtain 

1c.;(.) lc.;(z) - 1lZ3 = 0. (60) 
Then, at z = z” where i3f/az = af/at = 0, we can combine (12) and (60) resulting in 

f2,J0,, - f ;,l = 0 so that the coefficient of Z2 in (59) disappears. We define c ~ , ~  to be the 
coefficient of the term in ZiTj, i.e. 

co,o = f o , o ,  c0,2 = f 0 , 2 7  c3,0 

‘0.3 = f o , 3 3  

and introduce the additional transformation 

g=Z+-T, c2 1 T = T ,  
‘3 ,O 

for which the Jacobian is again unity, so that, after a little manipulation, 

+ + c ~ , ~  C3 + higher order terms. (63) 
7 Here we mean close to z = 2, and only close to z = 2; if, in fact, (14) is satisfied analytically over 

a finite interval then an even more singular result follows - see below. 
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The integral (9) is then, to leading order, given by 

This result is O(lmBI-5/6) and shows clearly that the field radiated from a caustic will 
be more singular than that radiated from a supersonic straight-bladed propeller. 
Specifically, using the results from 93, we find that, for thickness noise, the harmonic 
components of the radiated sound field contain terms of the form 

Pm - lmB11/6-”L, Pm - ImBI’16-”L sgn (mB); (65) 

there are thus four interesting types of blade shape to consider, corresponding to 
different values of the source gradient order vL. First, for 0 < vL < f (representing a 
very blunt airfoil), strong algebraic singularities of the form ltl-’-(’/6-”L) and 
ltl-1-(1/6-”L) sgn ( t )  are radiated. Secondly, for f < vL < a (representing blunt airfoils for 
f < vL < 1, wedge-shaped airfoils for vL = 1 and weakly cusped airfoils for 1 < vL < z) ,  
weak algebraic singularities of the form Itl-’+(”~-~/~) and Itl-’+(”~-~/~) sgn ( t )  are generated. 
Thirdly, for the specific case vL = a, logarithmic singularities and pressure discon- 
tinuities are radiated. Finally, for vL > a (cusped airfoils), there are no singularities 
and we obtain a smooth waveform. Similar results follow for steady loading noise with 
vL, in each case, reduced by 1 .  For non-singular radiation the leading edge must thus 
be lightly loaded with vL > i. These results are important in showing precisely how, at 
a caustic (or focus) condition, the radiation from a swept airfoil is more singular than 
that from a straight-bladed propeller. 

We need to understand, though, the circumstances under which a caustic can arise. 
Since (14) is satisfied analytically - even on just a vanishingly small region close to 
z = 5- we can integrate to find, on using (22), that a caustic will arise for radiation 
in direction 8 when the local blade leading-edge shape is given by 

Comparing this with (43) we see that it represents the generalization of the ‘minimum 
sweep’ result for arbitrary radiation angle 8 and for M ,  .t; 0. If then, for any angle 8, 
the blade shape over an element, centred on the swept-blade Mach radius, is given by 
(66), then the radiation in direction 8 is given by (64) and hence is of lower order in 
l /mB - and therefore more singular - than that given by the standard result (18). 
Physically, this result means that each point of the blade element radiates singularities 
as it cuts the Mach plane, with the radiation being focused on the observer at 8. 
Referring back to the discussion in 94 for a non-translating propeller we see that, for 
an observer at 8 = fn the ‘minimum sweep’ geometry, whilst reducing the radiation to 
observers at all other angles, can result in the radiation of an enhanced singularity 
(depending on the leading-edge shape or loading) in direction 8 = fn. The general 
solution (66) shows that variations in leading-edge geometry can lead to the radiation 
of these singularities in different directions - for both non-translating and translating 
propellers. Note, however, that the formal minimum sweep design for a translating 
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propeller, given by (47), does not lead to an enhanced singularity since, from (45), the 
singularities from each radius radiate in different directions instead of accumulating in 
one fixed direction. 

It is important that we emphasize, once again, that the caustic arises when the blade 
leading-edge shape is only given locally by (66); when (66) holds over a finite interval 
the effect is even more significant. 

6.2. The focusing Mach plane 
We now consider the situation in which (14) is satisfied over a finite interval, taken to 
be from the straight-blade Mach radius z = z* to the tip z = 1. We have already 
determined that singularities are radiated when discrete Mach radii cut through the 
Mach plane; when these Mach radii stretch continuously from z = z* to z = 1, 
however, singularities are radiated when every part of a blade cuts through the Mach 
plane (on the up stroke). Accordingly, stationary phase points lie along the intersection 
of the Mach plane with half of the propeller disk. It is appropriate, therefore, to change 
to Cartesian coordinates ( X ,  Y )  as shown in figure 5. The result is, of course, a 
continuous distribution of stationary points along X = z*, 0 < Y < (1 - z * ~ ) ~ / ~ .  We 
note that the analysis applies, particularly, to the minimum sweep design for a non- 
translating propeller, derived by Amiet and given here by (43). After some 
manipulation we find (see the Appendix), that the radiation is, to leading order, given 
by 

Radiation from the trailing edge is obtained by replacing SL(z) with S,(z). 
This result is O(lmBl-1/2) and thus represents radiation even more singular than that 

from a caustic. Specifically, we examine the effects of five types of leading-edge shape, 
corresponding to different values of the source gradient order vL, on thickness noise. 
First, for 0 < uL < i (representing blunt leading edges) strong algebraic singularities, 
ltl-1-(1/2-uL) and Jtl-'-(1/2-uL) sgn (t) ,  will be radiated. Secondly, for v L  = i (parabolic 
leading edge) singular pulses, 8(t), and pole singularities of order one, l / t ,  will be 
radiated. Thirdly, for i < vL < t (representing blunt leading edges for i < vL < 1, 
wedge-shaped leading edges for vL = 1, and cusped leading edges for vL > 1) weak 
algebraic singularities, Itl-'+("L-liz) and Itl-1+(uL-1/2) sgn (t) ,  will be radiated. Fourthly, 
for vL = $ (a specific 'cusp-shaped leading edge) logarithmic singularities and pressure 
discontinuities - or shocks - are radiated. Finally, when vL > the radiation is of the 
form Itl'~-3/2 or l t ( '~ -3 /2  sgn ( t )  and, therefore, produces a smooth waveform. 

Similar results follow for steady loading noise where the corresponding value of the 
source gradient order vL is reduced by 1 in each case. Non-singular radiation occurs 
when the leading edge is lightly loaded with vL > i. 

7. Results 
7.1. Leading-edge geometry and asymptotic solutions 

In this section we will present, and discuss, results obtained for supersonic, transonic 
and subsonic leading edges. We consider two different flight conditions: a 'cruise' 
condition with M,  = 0.8, Mt = 0.8 and the peak radiation angle 6' = c0s-l M ,  = 36.9"; 
and a possible ' take-off' condition with M,  = 0, Mt = 1.2 and the peak radiation angle 
6' = 90" (i.e. peak radiation is in the plane of the propeller). We also calculate results 
for thickness noise generated by blunt and sharp leading-edge shapes; in both cases the 
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trailing edges are designed to be sharper than the leading edges so that the radiation 
from the trailing edges can be neglected as mB+ 00. Loading noise results are not given 
here but, we emphasize, can be obtained in precisely the same manner; all that is 
required is a knowledge of the chordwise loading distribution. 

In the results to follow, the thickness/chord ratio for the airfoil with the blunt leading 
edge is given by 

h/c  = (b /c )  (l.485P2-O.63X- 1.7582?+ 1.422X3-0.519X4) (68) 
and is the same as that used by Tam (1983). The airfoil thus has a parabolic leading 
edge (the source gradient order v, = i), since h /c  - 1.485X1/2b/c as X+O,  and a 
wedge-shaped trailing edge (the source gradient order vT = l), since h/c  - 
1.2135(1 -X)b/c as X +  1. The airfoils with sharp leading edges are taken to have 
thickness/chord ratios given by 

h / c  = 3.375(b/c)X(l -X)2. (69) 

The airfoils thus have wedge-shaped leading edges (the source gradient order vL = l), 
since h/c  - 3.375Xblc as X+O, and cusp-shaped trailing edges (the source gradient 
order vT = 2), since h / c  - 3.375(1 -X)'b/c as x+ 1. We suppose, for simplicity, that 
the airfoil chord and maximum thickness are constant. The source strength S(z) for 
thickness noise is thus independent of z. It is, however, most important to note that the 
asymptotic leading-edge source strength SL(z), and trailing-edge source strength S,(z), 
are not independent of z since the wavenumber k, depends on the section relative Mach 
number M,. which, of course, increases with z. 

We start with a straight leading edge, and of course a supersonically operating 
propeller, and gradually increase the sweep towards the 'critical' design, i.e. the leading 
edge is defined, for z > z*, by 

with ,u = 0 for z d z* and A, a scale factor or sweep parameter, taking values between 
0 and 1. When h = 0 the blade is straight; when h = 1 the blade sweep is identical to 
that in (66) and the design is therefore critical; when 0 < h < 1 the blade sweep, at each 
radial station, is simply a fraction h of that on the critical design. For all such leading- 
edge shapes there is, from (14), a single Mach radius at z = * producing, from (18), a 
leading-order contribution of 

This result is, of course, invalid when h = 1 since the design is then critical. We use, 
instead, the result (67) which, for arbitrary S,(z), can easily be integrated numerically. 
It is, however, interesting to note that for constant SL(z), the integral (67) can be 
evaluated as (see Gradshteyn & Ryzhik 1965, $3.183, p. 282) 

z*S,(z*) 
'm - n1/21mB11/2 

where F and E are elliptic integrals of the first and second kind respectively and 

y = cos-' (73) 
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Since the integral (67) is, perhaps, likely to be dominated by contributions from the 
weak singularity at z = z*, (72) could be used as a first approximation to (67). 

Increasing the value of h beyond unity in (70) produces simply (71) again, with the 
square-root term replaced by (A2-  l)’/’, since the blade has, again, a single Mach 
radius at z = z*. As an alternative we modify the leading-edge sweep so that a greater 
part of the blade span is swept and the leading edge is everywhere subsonic; we take, 
for z > z*/h, 

(74) ,u = (1 - M ,  cos 0) [ ($- 1)l” - tan-’ ($ - 1 ) 7 ,  

with ,u = 0 for z < z*/h and h taking values above unity. Here, then, the scale factor 
h is applied to the radii instead of to the sweep. For this design the leading edge is, 
indeed, completely subsonic so that the dominant contribution to the sound field arises 
from the tip and, from (48) and (51), is given by 

7.2. Comparison between numerical and asymptotic results 
Comparisons between full numerical calculations and asymptotic approximations are 
shown in figures 6 9 .  To help in understanding the figures we recall that h represents 
a blade-sweep scale factor relative to that on a critical design with the sweep defined 
by (70) for 0 < h < 1 and (74) for h > 1. The numerical results are obtained by 
numerical integration of (2) with the source strength function S(z) given by the second 
expression in (5 )  and the integrand modified by the multiplying factor (32) - the 
chordwise non-compactness factor - in which the shape function F ( X )  is given by (68) 
or (69) for blunt or sharp leading edges respectively. The asymptotic results are given 
by (71) for h < 1, (67) for h = 1 and (75) for h > 1. In the figures the solid lines 
represent the full numerical solution, the dashed lines represent the asymptotic 
solutions for supersonic (0 < h < 1) and subsonic ( A  > 1) leading edges, and the black 
dot represents the asymptotic solution for a transonic leading edge ( A  = 1). For each 
condition results are given for mB = 20, 30, 50 and 100. 

Figure 6 shows the results for blunt leading-edge airfoil sections operating at the 
‘cruise’ condition. For low values of mB the numerical solution remains roughly 
constant, as the blade sweep is increased, until the ‘critical’ condition is reached; 
further increases in sweep produce substantial reductions in level. For higher values of 
mB, however, the solution increases initially, reaching a peak value at h = 1, before the 
levels reduce for highly swept blades. Clearly, the critical design ( A  = 1) generates levels 
that are 5-10 dB higher, in the direction of peak radiation, than a straight-bladed 
design. Indeed, the effect of the critical design is emphasized in the figure for mB = 50 
and 100 where the noise levels can be seen to drop initially before increasing rapidly 
close to h = 1 and then dropping as the sweep is increased further. The asymptotic 
results agree extremely well with the numerical calculations, the agreement becoming 
more marked for high values of mB. This is particularly true for h < 1, and indeed for 
h = 1, where the ‘enhanced’ effect of the critical condition on the numerical 
calculations only becomes clear as mB is increased. 

Results for sharp leading-edge airfoil sections operating at ‘cruise ’ conditions are 
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FIGURE 6. Comparison between numerical results and asymptotics for 0 < A < 2, parabolic leading 
edges, M ,  = 0.8, M ,  = 0.8, 0 = 37"; A represents a blade-sweep scale factor relative to that on a 
critical design and is defined by (70) for 0 < A < 1 and (74) for A > 1. 
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FIGURE 7. Comparison between numerical results and asymptotics for 0 < h < 2, wedge-shaped 
leading edges, M, = 0.8, M ,  = 0.8, 0 = 37'. 

shown in figure 7. These results are almost identical to those in figure 6 ,  except that 
noise levels for sharp leading edges are, typically, around 5-10 dB lower than those for 
blunt leading edges; this is, heuristically, in keeping with the results from %3,4  and 6 
which showed that the radiation from blunt leading edges is always more singular than 
that from a sharp leading edge (typically, by a half power of time in the pressure 
waveform). 

In figures 8 and 9 the results are given, for blunt and sharp leading-edge airfoil 
sections respectively, at ' take-off' conditions. As for 'cruise' conditions, the agreement 
between asymptotics and numerical calculations is very good and, indeed, increases at 
higher values of mB; the results for blunt leading edges are, typically 5 dB higher than 
those for sharp leading edges. 
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FIGURE 8. Comparison between numerical results and asymptotics for O <  h < 2, parabolic leading 
edges, M, = 0, M, = 1.2, 0 = 90". 
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FIGURE 9. Comparison between numerical results and asymptotics for 0 < h < 2, wedge-shaped 
leading edges, M,  = 0, M ,  = 1.2, 0 = 90". 

In some parts of figures 6 9  the agreement between numerical and asymptotic 
solutions for supersonic leading edges (0 < h < 1) is not quite as good as we might 
expect, particularly near to h = 0 which represents, of course, an unswept 
configuration. However, previous work (Crighton & Parry 1991) has shown that we 
can obtain much better agreement between numerics and asymptotics by adding 
higher-order terms to the solution, i.e. by adding the contributions from the tip to the 
leading-order Mach radius solution. 

The asymptotic result for the 'critical' design ( A  = 1) was calculated, in figures 6-9, 
by integrating (67) numerically. We remark in passing, however, that the use of the 
simplified result (70) seems to produce, at most, an error of 1.5 dB. 

There is, however, one additional point to note in figures 8 and 9: although the levels 
should decay with mB [as (mB)-' for blunt leading edges and as (mB)-3/2 for sharp 
leading edges] the results for mB = 50 are clearly higher than those for mB = 30 in the 
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FIGURE 10. Comparison between numerical results and asymptotics for 20 < mB < 100, A = 2, 
parabolic leading edges: (a) M, = 0.8, M, = 0.8, 0 = 37"; (b) M,  = 0, M, = 1.2, 0 = 90". 

regime h > 1. In order to understand the reason for this increase we must recall that 
for h > 1 the radiation comes mainly from the tip and is given, asymptotically, by (51). 
This equation represents the sum of two contributions from different azimuthal 
positions, i.e. the points at which the leading edge at the blade tip cuts the Mach plane 
on both the 'up stroke' and the 'down stroke' (see $5) .  Phase adding the radiation 
from these two points thus produces levels which oscillate with increasing mB but have 
envelope decay (mB)-l or ( ~ z B ) - ~ / ~ .  Results of noise level against frequency (represented 
by mB) are shown in figure 10 for blunt leading-edge airfoil sections; parts (a) and (b) 
represent 'cruise' and ' take-off' conditions respectively. The interference pattern 
generated by the two tip sources is clearly illustrated. The different rates of oscillation 
in (a)  and (b) are due to differences in the phase factor in the argument of the 
exponential in (75) : using (1) with cos 0 = M,, and expanding the inverse tangent, the 
term in square brackets becomes $[(*, - 1)/( 1 - M",)]"/", where M,, is the tip helical 
Mach number; this factor takes twice the value at 'cruise' that it does at 'take-off'. 

8. Conclusions 
In this paper we have used an asymptotic frequency-domain approach, within the 

framework of linear theory, to predict and analyse the noise radiation from a swept 
propeller. Since the singular radiation originates from transonic rotor edges, a full 
understanding of the noise generation and radiation processes can only be obtained by 
including nonlinear effects (Hawkings & Lowson 1974; Tam & Salikuddin 1986). The 
present consensus, however, is that linear theory provides a good first approximation 
to the sound field, and that nonlinear effects result, mainly, in the truncation of 
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singularities down to finite size. In addition, most computer codes are still developed 
according to linear theory. It is, therefore, important that singularities arising from a 
linear acoustics approach are fully understood. 

In the case of a propeller with a supersonic leading edge the radiation was found to 
be dominated by contributions from Mach radii (in agreement with the time-domain 
approach of Amiet 1988) - regions on the blade edges that move towards the observer 
at precisely sonic speed while at the same time having the edge normal to the line 
joining the source point and the observer - and the nature of singularities in the sound 
field is governed by details of blade edge shape and loading: a parabolic (blunt) leading 
edge produces an inverse square root and a wedge-shaped (sharp) leading edge 
produces a logarithm. 

For a propeller with a completely subsonic leading edge we have shown that 
singularities can still be radiated from the tip; the singularities are due to a supersonic 
(tip) edge effect and, accordingly, are related to the blade edge details at the tip: a 
parabolic (blunt) leading edge at the tip produces both a pressure discontinuity (shock) 
and a logarithm. 

Most importantly, we have shown that noise radiation can be substantially increased 
in certain directions, above that generated by a straight-bladed propeller, for a range 
of ‘critical’ sweep designs. Such designs have a continuous distribution of Mach radii 
along the blade edges with all of the singular radiation directed at the same observer 
point. Parabolic (blunt) leading edges result in both delta function and simple pole 
singularities ; wedge-shaped (sharp) leading edges result in inverse square-root 
singularities. Both numerical and asymptotic results show that, at typical operating 
conditions, ‘critical’ designs are 5-10 dB noisier, in the direction of peak radiation, 
than straight-bladed designs. Although the noise radiation from a ‘critical’ design is 
reduced in off-peak directions (relative to straight-bladed designs), aircraft certification 
depends on effective perceived noise (EPN) levels which are dominated by radiation in 
the peak direction. It is, therefore, crucial to propeller designers that ‘critical’ designs 
are avoided. 

Propeller designs which are similar, but not identical, to a ‘critical’ design - designs 
which have nearly transonic leading edges - can still encounter problems. A detailed 
discussion of transition through a critical design will, however, be presented elsewhere. 

Once again, therefore, we have shown how a frequency-domain approach can 
display all of the characteristics of the acoustic field that can be obtained using a time- 
domain approach, such as the presence of singularities in the sound field and their 
points of origin on the propeller blades. In addition, the asymptotic analysis produces 
remarkably simplified, and accurate, solutions which enable us to pick out certain 
physical effects not immediately apparent from other approaches. 

The author would like to thank Dr R. K. Amiet for his extremely helpful 
correspondence, particularly with regard to the minimum sweep designs discussed in $4. 

Appendix 
We use the polar coordinates ( 2 ,  $), where $ is related to t by $ = -t ,  and the 

Cartesian coordinates ( X ,  Y ) ;  the propeller disk is shown in figure 5 .  The blade leading- 
edge shape is given by (66) so that, from (10) and (22), 

(A 1) 
z 

f(z,$) = -$+-cos$- 
Z* 
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or, in Cartesian coordinates withflz, $) = F(X, Y), 

Differentiation produces 

3 (A 3) 

9 (A 4) 

aF - - z * X + X +  Y2- Y(X+ Y Z - Z * ~ ) ~ / ~  
ay- ( X +  Y)Z* 

ax ( X  + y“) Z* 
aF - Z* Y-X(X + Y2 - z * ~ ) ~ / ~  -- 

from which we find that F has stationary points at X = z*, for 0 < Y < (1 - z * ~ ) ~ / ~ ,  i.e. 
the stationary points lie on the intersection of the Mach plane with half of the nominal 
propeller disk plane (the section cut by a blade on the ‘down stroke’). Since the integral 
(9) for harmonic pressure is dominated by the contributions from the stationary points 
as mB+ co we find, on rewriting the integral in terms of X and Y and including 
non-compactness effects, that 

F(z*, Y)+(XAz*)2$F(z*, Y) 

From (A 2) and (A 4) we find that F(z*, Y) = in and a2F/aX (z*, Y )  = - l / ( z * Y )  so 
that, evaluating the X-integral, we obtain 

The Y-integral here can easily be converted back to a z-integral using z = ( z * ~  + Y2)li2 
whence the result (67) follows. 
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